Solving a Dirichlet problem for Poisson's Equation on a disc is as hard as integration.

Akitoshi Kawamura, Florian Steinberg, Martin Ziegler

Technische Universität Darmstadt

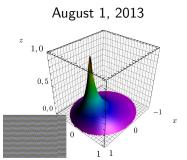


Table of contents

- Real computability and complexity: Definitions and examples
 - Reals
 - Real functions
 - An example
- 2 Complexity of integration
 - ullet \mathcal{NP} and $\#\mathcal{P}$
 - The complexity of integration
 - Parameter integration
- Poisson's problem on a disc
 - The greens function
 - Solving Poissons's equation by integrating
 - Integrating by using the solution operator

Definitions and examples

Recall that dyadic number is a number of the form $\frac{r}{2^n}$ for some $r \in \mathbb{Z}$ and $n \in \mathbb{N}$.

Definition

A real number x is called computable if there is a computable sequence $(d_n)_{n\in\mathbb{N}}$ of dyadic numbers, such that $|x-d_n|\leq 2^{-n}$ for every n. It is called polytime computable if there is such a sequence which computable in time polynomial in the value of n.

Examples

- π , e and $\ln(2)$ are polytime computable.
- It is not hard to construct uncomputable reals, computable reals not computable in polytime, etc.

Let $f:[0,1]\to\mathbb{R}$ be a function. A function $\mu:\mathbb{N}\to\mathbb{N}$ satisfying

$$|x - y| \le 2^{-\mu(n)} \quad \Rightarrow \quad |f(x) - f(y)| \le 2^{-n}$$

for all $x, y \in [0, 1]$ is called *modulus of continuity* of f.

Example

- Any Hölder continuous function has a linear modulus of continuity.
- 2 The function

$$f: x \mapsto \begin{cases} \frac{1}{1 - \ln(x)} & \text{, if } x \neq 0\\ 0 & \text{, if } x = 0 \end{cases}$$

does not have a polynomial modulus of continuity.

Definition

A real function $f:[0,1] \to \mathbb{R}$ is called computable, iff

- f has a computable modulus of continuity.
- 2 the sequence of values of f on dyadic arguments is computable.

It is called polytime computable if

- it has a polynomial modulus of continuity.
- ② there is a machine which, upon input $\langle d, 1^n \rangle$, returns a dyadic number s such that $|f(d) s| \le 2^{-n}$ in polynomial time.

Example

A constant function is (polytime) computable iff its value is.

Corollary (Main Theorem of computable Analysis)

Any computable function is continuous.

Example

The function

$$f: [0,1] \to \mathbb{R}, x \mapsto \begin{cases} -x \ln(x) & \text{,if } x \neq 0 \\ 0 & \text{,if } x = 0 \end{cases}$$

is polytime computable.

Proof.

One can check, that $n\mapsto 2(n+1)$ is a modulus of continuity. The function In is computable on the interval $[2^{-N},1]$ in time polynomial in the precision and N. For dyadic input we can now make the case distinction d=0 or $d\ge 2^{-N}$ and compute the function.

Complexity of integration

Recall that \mathcal{NP} is the class of polynomial time verifiable problems.

Prototype:

$$B = \left\{ x \mid \exists y \in \{0, 1\}^{p(|x|)} : \langle y, x \rangle \in A \right\}.$$

Example

Many problems are known to be \mathcal{NP} complete, for example SAT.

The question whether $\mathcal{P} = \mathcal{NP}$ is wide open and considered one of the big questions of modern mathematics.

For a fixed Element $x \in B$, there may be multiple witnesses, that is $y \in \{0,1\}^{p(|x|)}$ such that $\langle y,x \rangle \in A$.

Definition

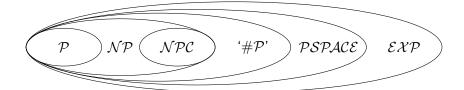
A function $\psi: \mathbb{N} \to \mathbb{N}$ is called $\#\mathcal{P}$ computable, if there is a polynomial time computable set A and a polynomial p such that

$$\psi(x) = \#\{y \in \{0,1\}^{p(|x|)} \mid \langle y, x \rangle \in A\}.$$

The following are easy to see:

Lemma

- 2 $\mathcal{FP} = \#\mathcal{P}$ implies $\mathcal{P} = \mathcal{NP}$.



Theorem (Friedman (1984), Ko (1991))

The following are equivalent:

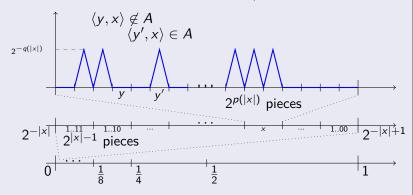
- The indefinite integral over each polytime computable function is a polytime computable function.
- $\mathcal{FP} = \#\mathcal{P}$
- The indefinite integral over each smooth, polytime computable function is a polytime computable function.

proof sketch $1 \Leftrightarrow 2$.

' \Leftarrow ': Standard grid approach: It is possible to verify in polynomial time, that a square lies beneath the function. Now $\mathcal{FP} = \#\mathcal{P}$ implies, that we can already count these squares in polynomial time. With help of the modulus of continuity an approximation to the integral can be given.

proof sketch $1 \Leftrightarrow 2$.

' \Rightarrow ': Let $\psi(x) = \#\{y \in \{0,1\}^{p(|x|)} \mid \langle y,x \rangle \in A\}$. Consider the following polytime computable function h_{ψ} :



 $\psi(x)$ can be read from the binary expansion of the integral over an appropriate interval in polynomial time. The polynomial q can be chosen such that h_{ψ} and even $\frac{h_{\psi}}{}$ are Lipschitz continuous.

Corollary

The following are equivalent:

① For any polytime computable $f:[0,1]\times [0,1]\to \mathbb{R}$ the function

$$x \mapsto \int_{[0,1]} f(x,y) dy$$

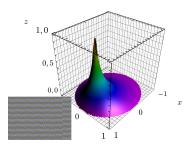
is again polytime computable.

proof (sketch).

exactly the same ideas as in the previous proof:

- $2. \Rightarrow 1$. Using a similar grid approach.
- $1. \Rightarrow 2$. Again by specifying a suitable function.

Solving a Dirichlet problem for Poisson's Equation on a disc is as hard as integration.



Consider the partial differential equation

$$\Delta u = f$$
 in B_d , $u|_{\partial B_d} = 0$.

We want to sketch a proof of the following:

Theorem (Kawamura, S., Ziegler, 2013)

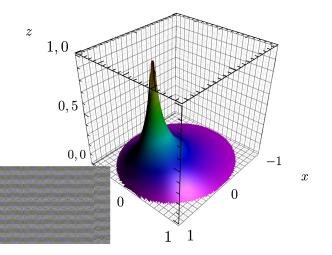
The following statements are equivalent:

- 2 The unique solution u is polytime computable whenever f is.

For the proof we will restrict our attention to the case d=2. Furthermore, we will identify \mathbb{R}^2 with \mathbb{C} and heavily use the classical solution formula in terms of the Green's function.

The greens function

$$u(z) = \int_{B_2} \underbrace{-\frac{1}{2\pi} \left(\ln \left(|w - z| \right) - \ln \left(|wz^* - 1| \right) \right)}_{=:G(w,z)} f(w) dw$$



Proof (of the Theorem) \Rightarrow .

It is not hard to see, that u has a linear modulus of continuity whenever f is bounded.

Let d be a (complex) dyadic number. If |d| is too close to 1, return zero. If not, set $\delta \approx (1-|d|)/2$, $B:=B_2(d,\delta)$ and return approximations to

$$\int_{B_2 \setminus B} \ln(|w - d|) f(w) dw$$

$$- \int_{B_2} \ln(|w d^* - 1|) f(w) dw$$

$$+ \int_0^{\delta} r \ln(r) \int_0^{2\pi} f(r e^{i\varphi} + d) d\varphi dr$$

(scaled by $-\frac{1}{2\pi}$), which is possible in polynomial time.

Proof (of the Theorem) ' \Leftarrow '.

From the proof of the theorem about the complexity of integration, one can see that it suffices to integrate the 'bump functions' h_{ψ} . For such a function set

$$f(w) := \frac{h_{\psi}(|w|)}{|w|}.$$

Since f and Δ are radially symmetric, also u will be radially symmetric. Transforming Poisson's equation to polar coordinates now results in

$$(ru')' = rf = h$$

Therefore, the integral of h_{ψ} can be recovered from u'. For the derivative to be polytime computable we need a bound for the second derivative. This can be extracted by tedious computations from the solution formula, whenever f is Hölder continuous.

Thank you!