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Reals

Definitions and examples

Recall that dyadic number is a number of the form r
2n for some

r ∈ Z and n ∈ N.

Definition
A real number x is called computable if there is a computable
sequence (dn)n∈N of dyadic numbers, such that |x − dn| ≤ 2−n for
every n. It is called polytime computable if there is such a
sequence which computable in time polynomial in the value of n.

Examples
π, e and ln(2) are polytime computable.
It is not hard to construct uncomputable reals, computable
reals not computable in polytime, etc.
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Real functions

Let f : [0, 1]→ R be a function. A function µ : N→ N satisfying

|x − y | ≤ 2−µ(n) ⇒ |f (x)− f (y)| ≤ 2−n

for all x , y ∈ [0, 1] is called modulus of continuity of f .

Example
1 Any Hölder continuous function has a linear modulus of

continuity.
2 The function

f : x 7→


1

1−ln(x) , if x 6= 0
0 , if x = 0

does not have a polynomial modulus of continuity.
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Real functions

Definition
A real function f : [0, 1]→ R is called computable, iff

1 f has a computable modulus of continuity.
2 the sequence of values of f on dyadic arguments is

computable.
It is called polytime computable if

1 it has a polynomial modulus of continuity.
2 there is a machine which, upon input 〈d , 1n〉, returns a dyadic

number s such that |f (d)− s| ≤ 2−n in polynomial time.

Example
A constant function is (polytime) computable iff its value is.

Corollary (Main Theorem of computable Analysis)
Any computable function is continuous.
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An example

Example
The function

f : [0, 1]→ R, x 7→
{
−x ln(x) ,if x 6= 0
0 ,if x = 0

is polytime computable.

Proof.
One can check, that n 7→ 2(n + 1) is a modulus of continuity. The
function ln is computable on the interval [2−N , 1] in time
polynomial in the precision and N. For dyadic input we can now
make the case distinction d = 0 or d ≥ 2−N and compute the
function.



Definitions and examples Complexity of integration Poisson’s problem on a disc

NP and #P

Complexity of integration
Recall that NP is the class of polynomial time verifiable problems.
Prototype:

B =
{

x | ∃y ∈ {0, 1}p(|x |) : 〈y , x〉 ∈ A
}
.

Example
Many problems are known to be NP complete, for example SAT.

The question whether P = NP is wide open and considered one
of the big questions of modern mathematics.
For a fixed Element x ∈ B, there may be multiple witnesses, that is
y ∈ {0, 1}p(|x |) such that 〈y , x〉 ∈ A.

Definition
A function ψ : N→ N is called #P computable, if there is a
polynomial time computable set A and a polynomial p such that

ψ(x) = #{y ∈ {0, 1}p(|x |) | 〈y , x〉 ∈ A}.



Definitions and examples Complexity of integration Poisson’s problem on a disc

NP and #P

The following are easy to see:

Lemma
1 FP ⊆ #P.
2 FP = #P implies P = NP.

P PSPACENP NPC ‘#P’ EXP
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The complexity of integration

Theorem (Friedman (1984), Ko (1991))
The following are equivalent:

1 The indefinite integral over each polytime computable
function is a polytime computable function.

2 FP = #P
3 The indefinite integral over each smooth, polytime

computable function is a polytime computable function.

proof sketch 1⇔ 2.
‘⇐’: Standard grid approach: It is possible to verify in polynomial
time, that a square lies beneath the function. Now FP = #P
implies, that we can already count these squares in polynomial
time. With help of the modulus of continuity an approximation to
the integral can be given.
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The complexity of integration

proof sketch 1⇔ 2.
‘⇒’: Let ψ(x) = #{y ∈ {0, 1}p(|x |) | 〈y , x〉 ∈ A}. Consider the
following polytime computable function hψ:

0 11
2

1
4

1
8

· · ·

2−|x | 2−|x |+1
· · ·

2|x |−1 pieces
1..11 1..10 1..00... ...x

· · ·
2p(|x |) pieces

y y ′ · · ·

〈y , x〉 6∈ A
〈y ′, x〉 ∈ A

2−q(|x|)

ψ(x) can be read from the binary expansion of the integral over an
appropriate interval in polynomial time. The polynomial q can be
chosen such that hψ and even hψ

x are Lipschitz continuous.
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Parameter integration

Corollary
The following are equivalent:

1 For any polytime computable f : [0, 1]× [0, 1]→ R the
function

x 7→
∫
[0,1]

f (x , y)dy

is again polytime computable.
2 FP = #P.

proof (sketch).
exactly the same ideas as in the previous proof:

2.⇒ 1. Using a similar grid approach.
1.⇒ 2. Again by specifying a suitable function.
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Solving a Dirichlet problem for Poisson’s Equation
on a disc is as hard as integration.



Definitions and examples Complexity of integration Poisson’s problem on a disc

The greens function

Consider the partial differential equation

∆u = f in Bd , u|∂Bd = 0.

We want to sketch a proof of the following:

Theorem (Kawamura, S., Ziegler, 2013)
The following statements are equivalent:

1 FP = #P
2 The unique solution u is polytime computable whenever f is.

For the proof we will restrict our attention to the case d = 2.
Furthermore, we will identify R2 with C and heavily use the
classical solution formula in terms of the Green’s function.
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The greens function

u(z) =

∫
B2
− 1

2π (ln (|w − z |)− ln (|wz∗ − 1|))︸ ︷︷ ︸
=:G(w ,z)

f (w)dw
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Solving Poissons’s equation by integrating

Proof (of the Theorem) ‘⇒’.
It is not hard to see, that u has a linear modulus of continuity
whenever f is bounded.
Let d be a (complex) dyadic number. If |d | is too close to 1,
return zero. If not, set δ ≈ (1− |d |)/2, B := B2(d , δ) and return
approximations to ∫

B2\B
ln (|w − d |) f (w)dw

−
∫

B2
ln(|wd∗ − 1|)f (w)dw

+

∫ δ

0
r ln(r)

∫ 2π

0
f (reiϕ + d)dϕdr

(scaled by − 1
2π ), which is possible in polynomial time.
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Integrating by using the solution operator

Proof (of the Theorem) ‘⇐’.
From the proof of the theorem about the complexity of integration,
one can see that it suffices to integrate the ‘bump functions’hψ.
For such a function set

f (w) :=
hψ(|w |)
|w | .

Since f and ∆ are radially symmetric, also u will be radially
symmetric. Transforming Poisson’s equation to polar coordinates
now results in

(ru′)′ = rf = h

Therefore, the integral of hψ can be recovered from u′. For the
derivative to be polytime computable we need a bound for the
second derivative. This can be extracted by tedious computations
from the solution formula, whenever f is Hölder continuous.
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Thank you!
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