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Definitions and examples

Reals

Definitions and examples

Recall that dyadic number is a number of the form 55 for some
reZ and neN.

Definition

A real number x is called computable if there is a computable
sequence (dp)nen of dyadic numbers, such that |x — d,| < 27" for
every n. It is called polytime computable if there is such a
sequence which computable in time polynomial in the value of n.

| \

Examples

e 7, e and In(2) are polytime computable.

@ It is not hard to construct uncomputable reals, computable
reals not computable in polytime, etc.

N,




Definitions and examples
[1e}

Real functions

Let f: [0,1] — R be a function. A function p : N — N satisfying
=yl <27 = [f(x) — f(y)| <27

for all x,y € [0,1] is called modulus of continuity of f.

@ Any Holder continuous function has a linear modulus of
continuity.

@ The function

fix— %”(X) X0
0 ,ifx=0

does not have a polynomial modulus of continuity.
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Real functions

A real function f : [0,1] — R is called computable, iff

© f has a computable modulus of continuity.

@ the sequence of values of f on dyadic arguments is
computable.

It is called polytime computable if
@ it has a polynomial modulus of continuity.

@ there is a machine which, upon input (d,1"), returns a dyadic
number s such that |f(d) — s| < 27" in polynomial time.

A constant function is (polytime) computable iff its value is.

Corollary (Main Theorem of computable Analysis)

Any computable function is continuous.
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An example

The function

—xIn(x) ,if x#0

f:]0,1] - R, x — _
0 Jifx=0

is polytime computable.

One can check, that n— 2(n+ 1) is a modulus of continuity. The
function In is computable on the interval 27N 1] in time
polynomial in the precision and N. For dyadic input we can now
make the case distinction d = 0 or d > 2~V and compute the
function. O
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NP and #P

Complexity of integration

Recall that NP is the class of polynomial time verifiable problems.

Prototype:
B={x|3ye{0,1}P: (y,x) € A}.

Many problems are known to be NP complete, for example SAT.

The question whether P = NP is wide open and considered one
of the big questions of modern mathematics.

For a fixed Element x € B, there may be multiple witnesses, that is
y € {0,1}P(X) such that (y,x) € A.

Definition

A function ¢ : N — N is called #P computable, if there is a
polynomial time computable set A and a polynomial p such that

Y(x) = #{y € {0,117V | (y,x) € A}.
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NP and #P

The following are easy to see:

Q FP C #P.
Q@ FP = #P implies P = NP.
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The complexity of integration

Theorem (Friedman (1984), Ko (1991))
The following are equivalent:
© The indefinite integral over each polytime computable
function is a polytime computable function.
Q@ FP=+#P
© The indefinite integral over each smooth, polytime
computable function is a polytime computable function.

proof sketch 1 < 2.

‘«=": Standard grid approach: It is possible to verify in polynomial
time, that a square lies beneath the function. Now FP = #P
implies, that we can already count these squares in polynomial
time. With help of the modulus of continuity an approximation to
the integral can be given. O
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The complexity of integration

proof sketch 1 < 2.

‘=" Let ¢(x) = #{y € {0,1}P(xD) | (y, x) € A}. Consider the
following polytime computable function hy,:

(y, x) & A
(y',x) €A
o—allxl) |- - k /\/\/\
! T ‘y } T —f T T } } } } J
y op(Ix]) pieces
| 1 1 T ces |
X T T T f — T X
2 2|X|71 pleces ................... 2
opay e v%, % |
0! 1 1 T .
8 G L

1(x) can be read from the binary expansion of the integral over an

appropriate interval in polynomial time. The polynomial g can be

h . . .
chosen such that hy and even =% are Lipschitz continuous. O
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Corollary

The following are equivalent:
@ For any polytime computable f : [0,1] x [0,1] — R the
function

X f(x,y)dy
[0,1]

is again polytime computable.

Q@ FP = #P.

proof (sketch).

exactly the same ideas as in the previous proof:
2. = 1. Using a similar grid approach.
1. = 2. Again by specifying a suitable function.




Poisson’s problem on a disc

Solving a Dirichlet problem for Poisson’s Equation
on a disc is as hard as integration.
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The greens function

Consider the partial differential equation
Au=fin By, ulps, =0.

We want to sketch a proof of the following:

Theorem (Kawamura, S., Ziegler, 2013)

The following statements are equivalent:
Q FP=#P

@ The unique solution u is polytime computable whenever f is.

For the proof we will restrict our attention to the case d = 2.
Furthermore, we will identify R? with C and heavily use the
classical solution formula in terms of the Green's function.
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The greens function

u(z) = /82 —% (In(jw — z|) = In(jwz* — 1|)) f(w)dw

=:G(w,z)
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Solving Poissons’s equation by integrating

Proof (of the Theorem) ‘="

It is not hard to see, that u has a linear modulus of continuity
whenever f is bounded.

Let d be a (complex) dyadic number. If |d| is too close to 1,
return zero. If not, set  ~ (1 — |d|)/2, B := By(d, ) and return
approximations to

/ In (|w — d[) f(w)dw
B\B
- /32 In(|we* — 1[)F(w)dw
6 27 .
—1—/0 rin(r) . f(re'Y + d)dedr

(scaled by —5=), which is possible in polynomial time. O




Poisson’s problem on a disc
.

Integrating by using the solution operator

Proof (of the Theorem) '<'.

From the proof of the theorem about the complexity of integration,
one can see that it suffices to integrate the ‘bump functions’hy,.
For such a function set

hy ((w])
wl

f(w) =

Since f and A are radially symmetric, also u will be radially
symmetric. Transforming Poisson’s equation to polar coordinates

now results in
(rdY =rf=h

Therefore, the integral of hy can be recovered from u’. For the
derivative to be polytime computable we need a bound for the
second derivative. This can be extracted by tedious computations
from the solution formula, whenever f is Holder continuous. O




Thank you!
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